De novo appearance and "strain" formation of yeast prion [PSI+] are regulated by the heat-shock transcription factor.
نویسندگان
چکیده
Yeast prions are non-Mendelian genetic elements that are conferred by altered and self-propagating protein conformations. Such a protein conformation-based transmission is similar to that of PrP(Sc), the infectious protein responsible for prion diseases. Despite recent progress in understanding the molecular nature and epigenetic transmission of prions, the underlying mechanisms governing prion conformational switch and determining prion "strains" are not understood. We report here that the evolutionarily conserved heat-shock transcription factor (HSF) strongly influences yeast prion formation and strain determination. An hsf1 mutant lacking the amino-terminal activation domain inhibits the yeast prion [PSI+] formation whereas a mutant lacking the carboxyl-terminal activation domain promotes [PSI+] formation. Moreover, specific [PSI+] strains are preferentially formed in these mutants, demonstrating the importance of genetic makeup in determining de novo appearance of prion strains. Although these hsf1 mutants preferentially support the formation of certain [PSI+] strains, they are capable of receiving and faithfully propagating nonpreferable strains, suggesting that prion initiation and propagation are distinct processes requiring different cellular components. Our findings establish the importance of HSF in prion initiation and strain determination and imply a similar regulatory role of mammalian HSFs in the complex etiology of prion disease.
منابع مشابه
Cellular factors important for the de novo formation of yeast prions.
Prions represent an unusual structural form of a protein that is 'infectious'. In mammals, prions are associated with fatal neurodegenerative diseases such as CJD (Creutzfeldt-Jakob disease), while in fungi they act as novel epigenetic regulators of phenotype. Even though most of the human prion diseases arise spontaneously, we still know remarkably little about how infectious prions form de no...
متن کاملProtein Folding Activity of the Ribosome is involved in Yeast Prion Propagation
6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI(+)] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de n...
متن کاملInteractions among prions and prion "strains" in yeast.
Prions are "infectious" proteins. When Sup35, a yeast translation termination factor, is aggregated in its [PSI(+)] prion form its function is compromised. When Rnq1 is aggregated in its [PIN(+)] prion form, it promotes the de novo appearance of [PSI(+)]. Heritable variants (strains) of [PSI(+)] with distinct phenotypes have been isolated and are analogous to mammalian prion strains with differ...
متن کاملRibosome-associated peroxiredoxins suppress oxidative stress-induced de novo formation of the [PSI+] prion in yeast.
Peroxiredoxins (Prxs) are ubiquitous antioxidants that protect cells against oxidative stress. We show that the yeast Tsa1/Tsa2 Prxs colocalize to ribosomes and function to protect the Sup35 translation termination factor against oxidative stress-induced formation of its heritable [PSI(+)] prion conformation. In a tsa1 tsa2 [psi(-)] [PIN(+)] strain, the frequency of [PSI(+)] de novo formation i...
متن کاملAutophagy protects against de novo formation of the [PSI+] prion in yeast.
Prions are self-propagating, infectious proteins that underlie several neurodegenerative diseases. The molecular basis underlying their sporadic formation is poorly understood. We show that autophagy protects against de novo formation of [PSI(+)], which is the prion form of the yeast Sup35 translation termination factor. Autophagy is a cellular degradation system, and preventing autophagy by mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 173 1 شماره
صفحات -
تاریخ انتشار 2006